动力电池激光极耳切割的工艺及应用
光切割在极片切割中的应用:切割设备选择,根据锂电池极片材质,可以选择不同的锂电池极片切割系统。比如,对于锂电池负极铜箔,可以选择1064nmMOPA型光纤激光器,其峰值功率密度为2.4×106W/mm2,可以通过对种子源的电进行调制,在兆赫兹工作频率内实现几纳米到几十纳米的“窄脉宽”切割。再如,对于锂电池正极铝箔,可以选择脉冲达到皮秒级的皮秒激光器,其可以通过进行种子源锁模,获得超窄脉冲信号。进而经放大级别输出,在几十兆赫兹工作频率内实现几纳米的“超窄脉宽”切割。同时皮秒激光器可以利用三倍频技术,将1064nm近红外激光向355nm紫外光、532nm绿光转化,满足多种类别材料加工需求,并在激光脉宽小于材料电——声弛豫时间时实现“冷加工”。
切割参数设置:在应用1064nmMOPA型光纤激光器切割8.0μm铜箔(锂电池负极)时,可以设定脉宽为20ns,工作频率与单脉冲能量分别为760kHz、0.13mJ,改善铜箔切割毛刺问题,并将毛刺尺寸控制在10μm内,同时减少锂电池铜箔极片切割飞溅、熔融层尺寸误差。部分情况下,为了减少熔融层“鱼鳞纹”现象,也可以将脉冲频率进行进一步提高,杜绝熔融重新凝结层。需要注意的是,在将脉宽一定、调高平均功率的同时,还需要根据激光器聚焦需要,调整焦点光斑直径为60μm,调整铜箔切割时振镜走笔速度为800mm/s。考虑到铜箔具有高热导率,材料吸收的激光能量不仅可以发生熔融汽化切口,而且可以沿着切口向材料内部、周边传递,形成熔融区、热扩散区多个区域。一般熔融区下方会出现显着的亮白色+红色+黄色热影响带,由近切口段向远处分布。
在应用9.1W皮秒激光器532nm绿光激光器切割铝箔正负极片时,可以设定脉宽为10ps,切割速度为1000mm/s,重复频率为300kHz,缩小正极片熔融重新凝结区域,减弱熔融区下方亮白色+红色+黄色热影响带,消除白色光亮层、红色热扩散层。而对于铜箔正负极片,因其电声弛豫时间为57.5ps>10ps(激光脉宽),极易致使电子获得能量无法满足与晶格完全交换热量需求,因此,可以依托高能激光环境,围绕最外层电子大量能量电离与内层电子碰撞电离过程,以高价正电母离子带离为对象,观察切口热效应。根据观察结果,进行切割参数的调整,或者进行辅助气体的应用,如将常温辅助气体变更为低温辅助气体等。
切割过程控制:在锂离子电池极片激光切割过程中,常用的切割方法为立式、卧式,前者用于叠片式电池切割,需要在传输带上水平运输极片,在极片到达激光发射装置下进行切割;后者多用于卷绕式电池极片切割,并通过在极片上方设置吸尘罩及时吸附切割过程中产生的粉尘。考虑到在极片上方吸尘的方式极易导致极片切割不平整、切割精度下降问题出现,可以通过激光发射装置、水平传输驱动装置、锂离子电池极片切割吸附装置、切割模块循环输送装置运行过程的严格控制,去除极片上方吸尘罩,保证极片切割精度。即将锂离子电池极片切割吸附装置设置在驱动模块传输的锂离子电池极片上方,促使其在循环输送模块第一输送带边缘与锂离子电池极片同时移动。在切割模块移动到切割位置后,由控制器直接启动激光发射装置,对锂离子电池极片进行切割。对于电池极片切割过程中出现的废渣则通过切割模块上设置的切割轨迹槽排出,同时通过切割模块中设置的负压通道吸附细小尘土。
综上所述,利用激光加工技术,可以在保证极耳焊接、激光切割质量的同时,提高加工效率,并降低维护作业量,助力锂电池极片切割、极耳焊接加工效益的提升。因此,在极耳焊接、极片切割过程中,加工者可以根据加工需求选择恰当的激光器,如皮秒激光器、MOPA激光器、紫外激光器等,并进行激光器波长、脉宽、最大单脉冲能量等参数的调整,保证激光加工优势的充分发挥。
免责声明:本站部分内容来自网络,以技术研究交流为目的,仅供大家参考、学习,如描述有误或者学术不对之处欢迎及时提出。如涉及版权问题,请联系我们将尽快核实并删除。关注激光应用中心,及时获取激光制造前沿技术!